

Space Weather Models running in real-time or forecasting mode

Yihua Zheng

About WSA+ENLIL

The WSA+ENLIL **Model Suite**

Wang-Sheeley-Arge (WSA Model) 1 Rs - 21.5Rs (0.0046 -0.1AU)

Photospheric magnetic field maps (can be from satellite observations such SOHO/MDI or SDO/HMI or ground-based observations such as GONG the magnetogram) are used as input to the WSA model (model solar corona up to 21.5 Rs) to represent the ambient solar wind.

ENLIL: 0.1 AU – 2 AU (operations)

Model of the solar wind in the heliosphere

venus diamond mercury square

Observed Photospheric Field from GON

EN = Lord + LÍL = Storm, "Lord (of the) Storm"

Courtesy: Dusan Odstrcil

WSA+ENLIL: capable of modeling the solar wind for both 'fair' weather and 'storm' conditions

Fair weather: ambient solar wind

Stormy Weather: Eruptions (CME)

Modeling of solar wind under stormy conditions

ENLIL Visualization

Courtesy of Stijn Calders @BIRA

Modeling of solar wind under stormy conditions Earth-directed

Forecasting capability enabled by WSA+ENLIL

WSA+ENLIL+cone

Predicting impacts of CMEs

WSA+ENLIL

Modeling and predicting the ambient solar wind

SWMF

06/07/2013 Time = 02:49:55

Northern Hemisphere

Northern Hemisphere noon solid contour: polar cap boundary noon

dusk

ს, [^{ლA}2] −0.290<⊔,<0.38: +0.382

-0.382

MLAT=50.0

Model at CCMC: BATSRUS midnight

dawn

Flare Prediction Model ASAP (Automatic Solar Activity Prediction)

http://spaceweather.inf.brad.ac.uk/asap/

Flare Prediction Model ASSA (Automatic Solar Synoptic Analyzer)

Provided by

Korean Space Weather Center

Flare Prediction Model MAG4 (UAH/MSFC, Falconer et al.)

Flare Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/flare.php

Currently registered models and particpating partners:

AMOS

Automatic McIntosh-based Occurrence probability of Solar activity

Administration

ASAP

Automated Solar Activity Prediction

ASSA

Automatic Solar Synoptic Analyzer

BoM

Data-driven probabilistic flare forecast model

Australian Government Bureau of Meteorology

MAG4

MAG4 LOS and Vector Magnetogram Forecasts (four products)

Met Office

Space Weather Forecast (full disk) and Sunspot Region Summary

SIDC

SIDC human operator moderated

Royal Observatory of Belgium

SolarMonitor.org Flare Prediction System

UFCORIN

Universal Forecast Constructor by Optimized Regression of INputs

Beta Flare Scoreboard Result

https://iswa.gsfc.nasa.gov/IswaSystemWebApp/index.jsp?i 1=606&I 1=7 &t 1=33&w 1=1721&h 1=865&s 1=0

SEP prediction REIeASE (Relativistic electron Alert System for Exploration)

Proton flux forecast model based on electron measurements by SOHO/COSTEP developed by Arik Posner

Reference: Posner, A. (2007), Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons, Space Weather, 5, S05001, doi:10.1029/2006SW000268.

HESPERIA REIEASE (v20190101)

RELeASE: Example

REleASE proton flux forecast at CCMC (data source: costep2) by ETPH IEAP CAU Kiel and SWRI — data gaps due to limited DSN coverage

SOHO/COSTEP real—time proton flux at CCMC (data source: costep2) data gaps 'due to limited DSN còverage

2011/11/26 Time: 03:58:52

2011/11/27 Time: 03:58:52

SEP Prediction UMA Proton Flux Forecast

Núñez, M. (2011), Predicting solar energetic proton events (E > 10 MeV), Space Weather, 9, S07003, doi 10.1029/2010SW000640.

UMASEP Model

ISEP & SEP Scoreboard https://kahala2.ccmc.gsfc.nasa.gov/isep/

Models

HESPERIA REIEASE

High Energy Solar Particle Events foRecastIng and Analysis

Relativistic Electron Alert System for Exploration

University of Malaga Solar energetic proton Event Predictor

SEPSTER

SEP predictions inspired by STEReo

STAT

SPE Threat Assessment Tool

(CORHEL+EPREM)

MAG4

Magnetogram Forecast

SEPMOD SEP MODel

ISEP & SEP Scoreboard https://kahala2.ccmc.gsfc.nasa.gov/isep/

dashed: gedsyncrarious brbit.

Madel at COMO: Fak-RO

Examples of April 5 events

Galaxy 15 failed approx 9:48Z

5.

-10.

Model at COMO: Fak-RO

 $\times [R_c]$

Fok Radiation Belt Model

Auroral Model: Ovation Prime

all,e 2013/06/07 04:00:00 48.9 GW

Empirical model based on ACE measurements at L1

Newell et al., 2007, JGR

CTIPe

Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model

PBMOD Scintillation Model

http://ccmc.gsfc.nasa.gov/RoR WWW/pbmod-rt/PBMOD-Text.html

Physics Based MODels - Time-Dependent Model of The Global Low-Latitude I onosphere, Plasma Irregularities, and Radio Scintillation

ABBYNormal HF Signal Absorption due to Solar Flares

http://ccmc.gsfc.nasa.gov/models/modelinfo .php?model=ABBYNormal

Predicted Kp, Dst

Kp based on Newell et al. Formula Dst from SWMF
Dst from WINDMI

http://ccmc.gsfc.nasa.gov/models/modelinfo.p hp?model=WINDMI